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Abstract— In this paper, we propose an analytical model to
capture the dynamics of the RED algorithm. We first develop a
system of recursive equations that describes the packet dropping
behavior of the RED algorithm. Using a notion from the theory
of random walks, we then derive an exact-closed form expression
that characterizes the loss characteristics of a RED queue. We
validate the derived formula by a numerical comparison with the
recursive equations.

I. INTRODUCTION

The traditional Internet architecture relies on a best-effort
architecture for all kinds of data traffic. The feedback-based
TCP protocol has initially been used to provide reliable data
services. However, the emergence of real-time applications
puts strict latency demands on the network infrastructure
that cannot be guaranteed by the TCP protocol. The IETF
has introduced the integrated and the differentiated service
technologies to provide stronger quality of service guarantees.

The quality of service performance of a network also de-
pends on the packet drop mechanisms of routers. The simplest
dropping schemes drop all packets arriving at a full queue.
Active Queue Management (AQM) has been proposed as a
mean to alleviate some congestion problems. Variations of
AQM include Early Packet Discard [7], and Random Early
Drop [11]. A widely studied AQM scheme is Random Early
Detection (RED) [4], [5]. Newer AQM schemes such as
Adaptive Virtual Queue Algorithm [8], Random Exponential
Marking [1] have been shown to address several shortcomings
of RED. However, the RED algorithm continues to be used in
practice and any new insights in its performance are of benefit
to network operators.

From a practical stand point, the deployment of the RED
algorithm is difficult because it must configured by choosing
the values of several parameters. The optimal configuration of
these parameters is not well understood.

Using simplified assumptions, guidelines for setting the
RED parameters have been proposed in [5]. Most of these
studies [3] are based on heuristics or simulations, but not
on a strict mathematical analysis. In [2], the RED algorithm
is modelled stochastically, whereas in [10] a Markov based
approach is used to study the optimal tuning of the RED
algorithm.

Most of the aforementioned research has focused on tuning
the RED parameters, namely, the maximum and minimum
thresholds. The average loss rate of a RED queue has not
been studied in detail. A model of the loss behavior of the
RED algorithm was first introduced in [13]. The authors model

the RED queue as a 3 state Markov model. An approximated
closed-form solution of the Markov model is derived. While
the solution provides satisfactory approximated results, it still
different from the precise values.

In this paper, we improve on the work of [13] by deriving
an exact closed-form solution for a 4-state Markov model of a
RED queue. The Markov model is derived by approximating
an exact queueing model of a RED queue. Introducing a
notion from the theory of random walks, we then derive an
exact solution of the Markovian RED model. In particular,
our model allows us to derive the expected loss probabilities
over arbitrary long periods of time. We calculate the average
probability of dropping k out of n packets which allows the
design of optimal Reed-Solomon codes.

In Section II, we first define an exact queueing model of a
RED queue which we then approximate by a Markov model
of the RED queue. We present a closed form solution of
the Markov model in Section III. We evaluate our results
numerically in Section IV and conclude in Section V.

II. MODEL AND TERMINOLOGY

We first define an exact queueing system of the RED
algorithm. For the subsequent analysis of the RED algorithm,
we then convert the queueing system into an 4-state Markov
model which approximately describes the dynamics of RED
and which we solve exactly in the following section. Finally,
we present a recursive formula that describes the loss behavior
of the RED algorithm.

A. RED algorithm

The RED algorithm is typically applied to a queue at the
output of a switch. A packet arriving at the queue is dropped
with probability p calculated based on the average queue
size qt. The average queue size qt is calculated using an
exponential weighted moving average as

qt = (1 − wq)qt−1 + wq q̃t.

Here, qt is the current average queue size, qt−1 is the average
queue size at the last time instant, wq is the weighting function
defining the exact low-pass filter, and q̃t is the current instan-
taneous queue size. qt is then compared to two thresholds,
a minimum threshold qmin and a maximum threshold qmax.
Each arriving packet is dropped with probability p given by

p =




0, qt < qmin
qt−qmin

qmax−qmin
pmax, qmin ≤ qt ≤ qmax,

1, qmax < qt,


 (1)
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Fig. 1. M/D/1/K approximation of the steady-state behavior of RED under quasi-stationary assumptions. For clarity, only the full set of transitions associated
with k = qmax are shown.

where pmax ≤ 1.

B. Exact queueing model of RED queue

We consider a queuing system with the capacity of K fixed
size packets operating under the RED queuing discipline. A
fixed packet size can represent an atomic unit of operation
when receiving variable length packets and thus does not
represent a loss of generality. We define the steady states of the
queue occupancy model as U0, .., UK . We denote the transition
probabilities as uij , 0 ≤ i, j ≤ K, where some uij = 0.

The RED queuing system is described by its traffic pattern
and is assumed to be operating in its steady-state regime. In
[10], the authors develop a model for analyzing both transient
and steady-state behavior of RED queues accommodating a
large population of random traffic sources the traffic generation
pattern of which is described by a Poisson arrival process
with a time varying rate. As the result of enforcing RED
packet discarding mechanism with a small averaging factor
of wq in the order of 10−3 and for a slowly varying Poisson
parameter, the RED queue is considered to be operating in
a quasi-stationary state. As such, the behavior of the queue
can be approximated with M/G/1/K queuing discipline. For
the purpose of our study, we select the M/D/1/K queuing
discipline, as shown in Fig. 1, not only as a special case of
M/G/1/K but as the best practical alternative. For an M/D/1/K
queue with a load factor ρ, we normalize the service time to
indicate the time unit such that the arrival intensity is equal to
ρ. Then, the steady-state probabilities πk of being in state k for
k ∈ {1, · · · ,K} form a discrete Probability Density Function
the terms of which are calculated as

πk =

{
π∞

k

π∞
0 +ρG(K) , if k ∈ {0, · · · ,K − 1}

1 − G(K)
π∞
0 +ρG(K) , if k = K

(2)

where G(K) =
∑K−1

k=0 π∞
k . Further, the steady-state proba-

bility π∞
k of state k for an infinite capacity M/D/1 queuing

system with load ρ is identified in Page 44 of [6] as

π∞
k = (1 − ρ) [

∑k
i=1 eρi(−1)k−i (iρ)k−i

(k−i)!

+
∑k−1

i=1 eρi(−1)k−i (iρ)k−i−1

(k−i−1)! ] , k ≥ 2
(3)

with π∞
0 = 1 − ρ and π∞

1 = (1 − ρ)(eρ − 1).

In this paper, we assume the average load ρ to be constant.
In practice, data traffic is often sent using the TCP protocol
which adjusts its sending rate in reaction to the dropping
behavior of the RED queue. We are currently investigating
how our approach could be extended to this scenario.

C. 4-state Markov approximation model

We now use the exact queueing model from the previous
section to derive an Markov approximation model for the RED
algorithm. We use the model to derive a closed form solution
for the average probability of dropping k out of n packets.

According to the way p is defined in eqn. (1), we can
define three aggregate states that characterize the behavior
of the RED algorithm. We define the bad aggregate state
b, the intermediate aggregate state I , and the good aggre-
gate state g, where packets are dropped with probability
p = 1, p = qt−qmin

qmax−qmin
pmax, and p = 0, respectively.

We divide the integers in the interval [0,K] into three sub-
sets Sg := {1, .., qmin}, SI := {qmin+1, .., qmax}, Sb =
{qmax+1, .., qK}. From Fig. 1, we see that b =

⋃
i∈Sb

Ui,

I =
⋃

i∈SI

Ui, g =
⋃

i∈Sg

Ui.

We further divide the aggregate state I in two sub-aggregate
states Ib and Ig where Ib denotes the sub-aggregate state of
I where a packet is dropped. Similarly, Ig denotes the sub-
aggregate state of I where a packet is not dropped. For further
usage, we set SIb

= SIg
= SI . For p defined as in eqn. (1)

and assuming the RED queue is in aggregate state I, Ib occurs
with conditional probability p and Ig occurs with conditional
probability 1−p. We note that whereas for the aggregate state
I the loss probability p of an arriving packet is a random
variable, for each of the sub-aggregate states Ib and Ig the loss
behavior is deterministic, i.e., p = 0 and p = 1, respectively.

We now derive the transition probabilities pij , i, j ∈
{b, Ib, Ig, g}, where pij denotes the probability that the RED
queue changes from aggregate state i to aggregate state j upon
the arrival of a packet, from the queueing model given in
Fig. 1. The transition probability pij is the probability that the
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system changes from any state Uk in the set Si to any state
Ul in the set in the change Sj . By the definition of the states
Ib (and Ig ), we see that the probability that state Ui, i ∈ SI ,
belongs to Ib is PLOSS(i). For Ig, it is 1−PLOSS(i). Setting

π∗
i =




πi, i ∈ {Sb, Sg},
πiPLOSS(i), i ∈ SIb

,
πi(1 − PLOSS(i)), i ∈ SIg

,


 (4)

u∗
ij =




uij , j ∈ {Sb, Sg},
uijPLOSS(j), j ∈ SIb

,
uij(1 − PLOSS(j)), j ∈ SIg

,


 (5)

we derive

pij =

∑
k∈Si

∑
l∈Sj

π∗
ku∗

kl∑
k∈Si

π∗
k

, i, j ∈ {b, Ib, Ig, g}. (6)

We see from (4) and (6) that the transition probabilities pij

are a function of the loss probabilities PLOSS(i).
In the sequel of this paper, we will only refer to the four

aggregate states b, Ib, Ig, g and refer to them simply as states.

D. Recursive definition of loss probabilities

We first calculate the quantities P (v + z, v, j), j ∈
{b, Ib, Ig, g} which are defined as the probabilities of dropping
z out of (v + z) arrived packets and being in state j after the
(v + z)-th packet is buffered/dropped by the RED algorithm.
Summing over the loss probabilities of the 4 different states of
the RED queue, we obtain the overall probability P (v + z, v)
to lose z out of (v + z) packets as

P (v + z, v) =
∑

j∈{b,Ib,Ig,g}
P (v + z, v, j). (7)

We now calculate the loss probabilities P (v + z, v, j) as
functions of the transition probabilities pij and the steady
state probabilities jss, j ∈ {b, Ib, Ig, g}, where jss is the
probability that the RED queue is in state j.

We describe the dynamics of a RED queue via the following

Ig g

Ib b

P
bg

P
I
b

b

P
gI

g

P
I
g

I
b

Pgg

P
bbP

I
b

I
b

P
I
g

I
g

Fig. 2. Four state Markov model of RED algorithm

recursive relations. For c ∈ {g, Ig},
P (v + z, v, c) =

∑
d∈{b,Ib,Ig,g}

P (v − 1 + z, v − 1, d)pdc. (8)

For c ∈ {b, Ib},
P (v + z, v, c) =

∑
d∈{b,Ib,Ig,g}

P (v + z − 1, v, d)pdc. (9)

The loss probabilities for a single packet can be calculated
from the transition and steady state probabilities as follows:

P (1, 0, j) = 0, j ∈ {g, Ig} (10)

P (1, 0, j) = pgjgss + pIgjI
g
ss + pbjbss + pIbjI

b
ss (11)

j ∈ {b, Ib},
P (1, 1, j) = 0, j ∈ {b, Ib} (12)

P (1, 1, j) = pgjgss + pIgjI
g
ss + pbjbss + pIbjI

b
ss (13)

j ∈ {g, Ig}.
Similar to eqn. (8) - (9), one can formulate a system of
equations to calculate the initial steady state probabilities: For
c ∈ {b, Ib, Ig, g},

css =
∑

d∈{b,Ib,Ig,g}
dsspdc. (14)

The system of equations (14) can be solved by noting that
only three of the four equations are linearly independent and
that the sum of the four steady state probabilities equals one.

We introduce some further terminology. In order to express
the quantities P (v + z, v, j) as a function of the steady state
probabilities jss, we have to consider all possible scenarios
which lead to z drops out of (v +z) arrived packets and leave
the RED queue in to state j after the (v + z)-th packet has
been buffered/dropped by the RED algorithm. In other words,
we have to look at all random walks of length (v + z + 1)
that start in an initial steady state jss with j ∈ {b, Ib, Ig, g},
that after the buffering/dropping of the t = v + z-th packet
finishes in state j, and that after the buffering/dropping after
any of the intermediate packets t = 1, .., v + z − 1 are in one
of the four states j ∈ {b, Ib, Ig, g}. For the calculation of the
packet loss probabilities, we assume that no packet is either
received or gets lost in the initial state jss. The transition
probabilities between the different states at consecutive steps
are the transition probabilities pij , 1 ≤ i, j ≤ 4 defined above.

We further define a 4 × 4 integer matrix a =
(aij)i,j∈{b,Ib,Ig,g}. We define the functions f i,j(n+1, a) as the
number of possibilities to construct a random walk of length
n+1 that starts in state i, finishes in state j, and that for each
i, j ∈ {b, Ib, Ig, g} contains 0 ≤ ai,j ≤ n transitions from

state i to j. We require of course that
4∑

i,j∈{b,Ib,Ig,g}
ai,j = n.

We note that the function f i,j(n + 1, a) can be equal to zero.
For example, if n = 2, i = j = Ig, ag,g = 2, and all other
ai,j = 0, then f Ig,Ig

(a) = 0 as it is not possible to construct
a random walk of length n that starts and ends at Ig, when
only aij = 0 with (i, j) �= (g, g).
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III. SOLUTION OF THE RED MARKOV MODEL

In eqn. (8) - (9) we have defined a set of recursive equations
that allow us to calculate the quantities P (v + z, v, j). In this
section, we derive closed-form solutions for the P (v+z, v, j).
In particular, we show the following theorem:

Theorem 1: For v + z ≥ 1, c ∈ {b, Ib, Ig, g}
P (v + z, v, c) =

∑
d∈{b,Ib,Ig,g}

Dv,z,d,cdss. (15)

where for i, j ∈ {b, Ib, Ig, g} :

Dv,z,i,j (16)

=
v,z,∗∑

agg≥0

v,z,∗∑
agIg≥0

v,z,∗∑
agb≥0

v,z,∗∑
a

gIb≥0

....

v,z,∗∑
a

Ibb
≥0

v,z,∗∑
a

IbIb≥0

f i,j(v + z + 1, a)pagg
gg p

agIg

gIg p
agb

gb p
a

gIb

gIb ..p
a

Ibb

Ibb
p

a
IbIb

IbIb .

The notation
v,z,∗∑
aij≥0

denotes only summing over such aij that

satisfy the following conditions:∑
j∈{b,Ib,Ig,g}

ajb +
∑

j∈{b,Ib,Ig,g}
ajIb = z (17)

∑
j∈{b,Ib,Ig,g}

ajg +
∑

j∈{b,Ib,Ig,g}
ajIg = v, (18)

where the 4 × 4 matrix a = (aij)i,j∈{b,Ib,Ig,g} is determined
by the values aij over which the terms Dv,z,i,j are summed.
Remark: Closed-form expressions for the functions f i,j(n, a)
are not known. However, the actual values of f i,j(n, a) do not
depend on the transition and steady state probabilities. Thus,
they can be calculated off-line by an exhaustive search.

A. Proof of Theorem 1

In the definitions of the terms P (v + z, v, j), the quantity
k := v + z expresses the number of packets that have been
received at a RED queue during the observation period. We
prove Theorem 1 by induction over k. This means that for
the inductive step, we assume that the eqn. (15) have been
shown for all pairs v and z that satisfy k = v + z, and under
this assumption show that they also hold for all pairs v and z
satisfying k + 1 = v + z.
Inductive base case k=1: We start with the case v = 0, z = 1.
We first consider the term P (1, 0, g). We have to show that
for j = g eqn. (10) follows from eqn. (15) with c = g. We
see from eqn. (15) with c = g that it is sufficient to show
that D0,1,j,g = 0 for j ∈ {b, Ib, Ig, g}. Eqn. (18) with v = 0
implies that ajg = 0 for j ∈ {b, Ib, Ig, g}. However, ajg =
0, j ∈ {b, Ib, Ig, g} implies that f j,g(2, a) = 0 as there is no
possibility to construct a random walk of length 2 that ends at
g if there are no transitions from any state j ∈ {b, Ib, Ig, g}
to state g. Thus, D0,1,j,g = 0. The same argument shows that
P (1, 0, Ig) is defined correctly by eqn. (15) with c = Ig.

We now consider the term P (1, 0, b). We show that eqn.
(11) follows from eqn. (15) for c = b. We see from (18) with
v = 0 that for each D0,1,j,b there is ajg = ajIg = 0 for

j ∈ {b, Ib, Ig, g}. Thus, we are only left with terms ajIb and
ajb. We note that for a random walk of length 2, for each j
exactly one of the entries ajb or ajIb is not equal to zero. If this
entry is of the type ajIb , then f j,b(2, a) = 0 because a random
walk of length 2 cannot terminate at b if only transitions of
type akIb happen. If the only non-zero entry of matrix a is
of type ajb, there is exactly one possibility of constructing a
random walk of length 2 that begins at j and ends at b, i.e.,
f j,b(2, a) = 1. Summarizing the findings of this paragraph, we
see that eqn. (11) follows from eqn. (15) with c = b. We can
show in the same way that the quantity P (1, 0, Ib) is defined
correctly by eqn. (15) with c = Ib.

Second, we consider the case v = 1 and z = 0. We show
that for j = b (and j = Ib) eqn. (12) follows from eqn. (15)
with c = b (c = Ib). We argue similarly as above to show
that f j,b(2, a) and f j,Ib

(2, a) are equal to zero. In particular,
we show that eqn. (17) with z = 0 implies f j,b(2, a) = 0
(and f j,Ib

(2, a) = 0). Next, we consider the term P (1, 1, g).
We have to show that eqn. (13) follows from eqn. (15) with
c = g.. We see from eqn. (17) for z = 0 that all ajb =
ajIb = 0. Arguing as above, we see that for each j exactly
one of the two entries ajg or ajIg is not equal to zero. We
further follow the argument above to show that in the first
case f j,g(2, a) = 1 and in the second case f j,g(2, a) = 0,.
The expression P (1, 1, Ig) is treated in the same way.
Inductive step from k to k+1: We now show that if the eqns.
(15) are true for all pairs v and z satisfying k = v + z, then
they are also true for all pairs v and z satisfying k+1 = v+z.
We first consider the quantity P (v + z, v, g). By the inductive
assumption, we see that on the right hand side of eqn. (8)
with c = g, we have k = v − 1 + z. Thus, we can apply the
inductive assumption to the right hand side of eqn. (8) with
c = g. We insert the eqn. (15) in both sides of eqn. (8) with
c = g. We have to show that for c ∈ {b, Ib, Ig, g}, there is

Dv,z,c,g =
∑

d∈{b,Ib,Ig,g}
Dv−1,z,c,dpdg. (19)

In order to show eqn. (19) with c = g, we proceed in 2 steps:

1) Dv,z,i,j is defined in eqn. (16) via a multiple summation
over the terms aij . Each of the specific sixteen tuples
ai,j , i, j ∈ {b, Ib, Ig, g} occurring in the multiple sum-
mation defines a matrix a. We show that a matrix a
appears on the left hand side of eqn. (19) with c = g,
i.e., in the summation defining Dv,z,g,g, if and only if
it also appears on the right hand side of eqn. (19) with
c = g, i.e., for at least one of the terms Dv−1,z,g,gpgg,

Dv−1,z,g,Ig

pIgg, Dv−1,z,g,bpbg, or Dv−1,z,g,Ib

pIbg it is
part of the summation defining the term.

2) For a fixed matrix a appearing on both sides of eqn. (19)
with c = g, we show that the sum of the terms f i,j(·, ·)
which are counted when a appears in the summation
def. a term D or Dp is equal on both sides of the eqn.

The relation (19) with c = g then follows from both claims.
In order to show the first claim, we distinguish two cases.

In the first case Dv,z,g,g = 0. The definition (16) of Dv,z,g,g
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implies that fg,g(·, ·) = 0 for all terms fg,g(·, ·) appearing
in the definition of Dv,z,g,g. In other words, there exists no
possible random walk of length (v + z + 1) starting and
terminating in state g. This implies that there exists no random
walk of length (v + z) starting in state g and terminating in
any state j. Otherwise, one could construct a random walk of
length (v + z + 1) starting and terminating in g by taking a
random walk of length (v + z) that starts in g and terminates
in j and adding an additional transition from j to g. Thus, the
terms f ·,·(·, ·) appearing in the definitions of the terms D on
the right hand side are all equal to zero. This proves eqn. (19)
with c = g when Dv,z,g,g = 0.
In the second case, in the definition of Dv,z,g,g we sum over at
least one matrix a such that fg,g(v+z+1, a) �= 0. For such a
matrix a, the definition of fg,g(v+z +1, a) implies that there
are u, 1 ≤ u ≤ 4 states ji, with 1 ≤ i ≤ u, ji ∈ {b, Ib, Ig, g}
such that ajig �= 0.

We now define a 4×4 matrix Jij as the matrix with the (i, j)
entry equal to 1 and all other entries equal to 0. We define
a− Jij as the matrix obtained by the per-entry subtraction of
the matrix entries. For any matrix a with fg,g(v+z+1, a) �= 0
and ji such that ajig �= 0, one can easily verify that the matrix
a − Jjig appears in the summation (16) defining Dv−1,z,g,ji .
Multiplying Dv−1,z,g,ji by pjig on the right hand side of
eqn. (19) with c = g changes the matrix a − Jjig to a. In
consequence, each matrix a appearing on the left-hand side of
eqn. (19) with c = g also appears on the right-hand side for
the terms Dv−1,z,g,ji when ajig �= 0. The inverse statement
follows in the same way. Thus, the second claim follows from
Lemma 1 the proof of which we omit for space reasons:

Lemma 1: For k ≥ 1,

f i,j(k + 1, a) =
∑

l∈{b,Ib,Ig,g}, al,j>0

f i,l(k, a − Jl,j).

For c �= g, the eqn. (19) is shown in the same way as for
c = g. The inductive steps for eqn. (15) with c �= g are shown
in the same way as for c = g. �

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the RED algorithm using Theorem 1. As an input for
a numerical evaluation, we require values for the transition
probabilities pij as defined in sec. II. In [13], a methodology to
derive these values from actual simulations has been described.
We have used the methodology proposed in [13] and have
derived the transition probabilities given in Table I. Using
these values, we calculate the values of P (v+z, v) as defined
in eqn. (7). The results are shown in Fig.3.

We have calculated the values P (v + z, v) using eqn. (7).
The values P (v + z, v, j) can be obtained using either the
recursive eqn. (8) - (9) or via the closed-form expressions of
Theorem 1. As Theorem 1 provides an exact solution for the
quantities P (v+z, v, j), we expect that both ways to calculate
P (v+z, v, j) give identical results. Our numerical experiments
confirm this expectation. This improves over the previous
work in [13] where one could observe numerical differences
between the recursive and the closed-form solutions.

TABLE I

TRANSITION PROBABILITIES

b Ib g Ig

b 0.6 0.3 0.0 0.1
Ib 0.3 0.4 0.1 0.2
g 0 0.1 0.36 0.54
Ig 0.1 0.2 0.2 0.5

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

z

P
(v

+
z,

v)

v=2

v=20

Fig. 3. P (v + z, v) for v ∈ [2, 20]

V. CONCLUSIONS

In this paper, we develop an exact queueing model of the
RED algorithm which we convert into a four state Markov
model. We use the Markov model to describe the loss char-
acteristics of a RED queue. We derive an exact closed-form
solution of the Markov model. We show via simulations that
the closed-form solution matches exactly with a recursive
description of the loss process.
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